Wilson, Tabatha

From: Gilliam, Allen

Sent: Tuesday, January 28, 2014 2:13 PM

To: Paul Burns

Cc: Cary Roth; robertmoore@rwu.org; Fuller, Kim; Wilson, Tabatha; Johnson, Miles; Ramsey,

David

Subject: AR0043397_Rogers Jan 2014 annual Pretreatment report and ADEQ reply_20140128

Attachments: Rogers AR 2013 Pretreatment Status Report final 140128.pdf

Paul,

Rogers' annual Pretreatment report was electronically received on 1/28/14, reviewed, deemed complete and compliant with the reporting requirements in the Federal Pretreatment Regulations per 40 CFR 403.12(i).

The report was informative, comprehensive and the details put into it was greatly appreciated.

It was noted "local limits" were calculated for T. Phosphorous and CBOD based on an allocation of their maximum allowable industrial loading (MAIL). Ensure the basis for these calculations are made available when Rogers submits its Program modifications to be current with the Streamlining revisions to the Federal Pretreatment Regulations in 40 CFR 403.

No further action is deemed necessary at this time.

Again, thank you for submittal of a complete and comprehensive annual Pretreatment report.

Sincerely,

Allen Gilliam
ADEQ State Pretreatment Coordinator
501.682.0625

E/NPDES/NPDES/Pretreatment/Reports

From: Paul Burns [mailto:PaulBurns@RWU.ORG]
Sent: Tuesday, January 28, 2014 10:06 AM

To: Gilliam, Allen

Cc: Robert Moore; Cary Roth

Subject: Rogers IPT Status Report for 2013

Allen,

I've attached the required annual pretreatment status report for 2013. Our new team member Camille Montgomery wrote the section on FOG Abatement. Cary reviewed and edited the report.

Please let me know if you have any questions or comments.

Sincerely,

Paul Burns Pretreatment Coordinator

ROGERS WATER UTILITIES

ROGERS POLLUTION CONTROL FACILITY

4300 Rainbow Rd Rogers, AR 72758 479-273-7378 x306


ANNUAL PRETREATMENT PROGRAM STATUS REPORT

for the

CITY OF ROGERS, ARKANSAS

January 2013 - December 2013

Permit No. AR0043397

Submitted to Arkansas Department of Environmental Quality (ADEQ)

Table of Contents

- I. Certification
- II. Monitoring Results
 - A. Monitoring Results Table III Pollutants
 - B. Monitoring Results Table II Pollutants
- III. Attachment A
- IV. Attachment B
- V. Attachment C.
 - A. General Information
 - B. Significant Industrial Compliance
 - C. Compliance Monitoring Program
 - D. Enforcement Actions
- VI. Significant Violator Newspaper Publication
- VII. Pretreatment Program Overview
 - A. Industrial User List
 - B. Industrial Control Documents
 - C. Industrial Monitoring and Inspection Activities
 - D. Industrial Compliance Status
 - E. General Pretreatment Regulation Requirements
 - F. POTW Analytical Results Discussion
 - G. City Wide Water Usage Trends
 - H. Oil and Grease Abatement
 - I. Surcharge Summary
- VIII. Industrial Pretreatment Contacts

I. Certification

NPDES Permit Holder:

City of Rogers

Report Date:

January 27th, 2014

Reporting Period:

January 2013 - December 2013

POTW:

Rogers Pollution Control Facility

Address:

4300 Rainbow Road

Rogers, AR 72758-1440

NPDES Permit Number:

AR0043397 - AFIN 04-00155

Effective Date:

March 1, 2006

Modified Date:

November 1, 2006

Expiration Date:

February 28, 2011

For further information concerning this report contact:

Paul Burns

Pretreatment Coordinator

4300 Rainbow Road Rogers, AR 72758-1440 479-273-7378 x306 paulburns@rwu.org

I certify under penalty of law that all the information supplied in this report, including attachments, is true, accurate and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for purposely, knowingly, recklessly or negligently submitting false information.

Earl Rausch

Interim Superintendent

Rogers Water Utilities

Date

II. A. MONITORING RESULTS TABLE III POLLUTANTS REPORTING YEAR: JANUARY 2013 TO DECEMBER 2013

TREATMENT PLANT: City of Rogers

NPDES PERMIT NO. AR0043397

AVERAGE POTW FLOW: L001 = 7.070 MGD, L002 = 1.063 MGD

% STORM WATER INFILTRATION: 23.6%

% IU FLOW: 10.3

		Maximum	Maximum Influent						Calc.		Effl	uent		$\neg \neg$
METALS,		Allowable		Concentrations in µg/L					WQ		Concentrati	ions in μg/L		
CYANIDE	Units	Headworks		Dates Sampled					Level		Dates S	Sampled		
& PHENOLS		Level	00/05/06	<u> </u>			Limit	00/06/05		•	44.00			
(Total)		μg/L	03/05-06	05/28-29	09/0	03-04	11,	/25-26	μg/L	03/06-07	05/29-30	09/04-05	11/2	26-27
Antimony	μg/L	na	< 2.0	0.55	<	1.0	<	1.0	na	< 0.40	< 0.40		<	0.40
Arsenic	μg/L	25.0	0.60	0.40	<	1.0		0.60	504	0.20	0.22	0.44		0.34
Beryllium	μg/L	na	< 1.0	< 0.50	<	0.50	<	1.0	na	< 0.20	< 0.20	< 0.20	<	0.20
Cadmium	μg/L	19.0	0.20	< 0.20	<	0.20	<	1.0	10.30	< 0.20	< 0.20	< 0.20	<	0.20
Chromium	μg/L	528	1.4	1.9		1.6		1.6	1847	0.20	0.32	0.28		1.5
Copper	μg/L	678	32.4	21.3		25.8		23.2	60.5	1.9	1.9	1.5		2.1
Lead	μg/L	71.0	1.0	1.2		0.60		0.60	27.6	0.14	0.20	< 0.20		0.22
Mercury	μg/L	0.8038	0.0774	0.158		0.220		0.0865	0.0167	0.0030	0.0013	0.0103	(0.0027
Molybdenum	μg/L	53.0	0.60	1.0		0.95		0.80	na	0.48	0.56	0.58		1.0
Nickel	μg/L	19.0	3.4	3.2		3.0		3.4	621	1.3	1.4	1.3		2.3
Selenium	μg/L	16.0	< 5.0	< 2.5	<	2.5	<	5.0	8.28	< 1.0	< 1.0	< 1.0	<	1.0
Silver	μg/L	100	< 1.0	< 1.0	<	0.50	<	1.0	25.0	< 0.20	< 0.40	< 0.20	<	0.20
Thallium	μg/L	na	< 1.0	< 0.50	<	0.50	<	1.0	na	< 0.20	< 0.20	< 0.20	<	0.20
Zinc	μg/L	500	109	101		124		125	460	39.6	42.6	43.9		49.4
Cyanide	μg/L	27.0	< 10	< 10	<	10	<	10	8.5	< 10	< 10	< 10	<	10
Phenols	μg/L	na	37	65		48		46	na	< 5	< 5	< 5	<	5
				Loading i	in lb/o	day			Loading in lb/day					
Antimony	lb/day	na	< 0.115	0.037	<	0.057	<	0.059	na	< 0.023	< 0.025	< 0.023	<	0.023
Arsenic	lb/day	1.697	0.034	0.027	<	0.057		0.035	34.2	0.012	0.014	0.025		0.020
Beryllium	lb/day	na	< 0.057	< 0.034	<	0.029	<	0.059	na	< 0.012	< 0.013	< 0.011	<	0.012
Cadmium	lb/day	1.290	0.011	< 0.014	<	0.011	<	0.059	0.699	< 0.012	< 0.013	< 0.011	<	0.012
Chromium	lb/day	35.84	0.080	0.126		0.089		0.094	125	0.012	0.020	0.016		0.086
Copper	lb/day	46.02	1.861	1.446		1.475		1.363	4.11	0.112	0.120	0.086		0.124
Lead	lb/day	4.819	0.057	0.081		0.034		0.035	1.87	0.008	0.013	< 0.011		0.013
Mercury	lb/day	0.055	0.0044	0.0107		0.0126		0.0051	0.00113	0.0002	0.0001	0.0006		0.0002
Molybdenum		3.597	0.034	0.068		0.054		0.047	na	0.028	0.035	0.033		0.059
Nickel	lb/day	1.290	0.195	0.214		0.172		0.200	42.149	0.076	0.087	0.076		0.134
Selenium	lb/day	1.086		< 0.170	<	0.143	<	0.294	0.562	< 0.058			<	0.058
Silver	lb/day	6.787	< 0.057	< 0.068	<	0.029	<	0.059	1.697	< 0.012	< 0.025	< 0.011	<	0.012
Thallium	lb/day	na	< 0.057	< 0.034	<	0.029	<	0.059	na	< 0.012	< 0.013	< 0.011	<	0.012
Zinc	lb/day	33.94	6.259	6.855		7.091		7.343	31.2	2.311	2.698	2.492		2.861
Cyanide	lb/day	1.833	< 0.574	< 0.679	<	0.572	<	0.587	0.577	< 0.584	< 0.633	< 0.568	<	0.579
Phenols	lb/day	na	2.125	4.412		2.745		2.702	na	< 0.292	< 0.317			0.290
Flow	MGD	INF	6.881	8.133		6.852		7.039	EFF	6.992	7.590	6.803		6.939
1 10 00	MUD	1141.	0.001	0.133		0.032		7.037	PLL	0.772	7.370	0.003	1	0.737

Laboratory Analysis							
	2013						
EPA	Lab	EPA					
Method	PQL	MQL					
	μg/L	μg/L					
200.8	0.40	60					
200.8	0.20	0.5					
200.8	0.20	0.5					
200.8	0.20	0.5					
200.8	0.20	10.0					
200.8	0.20	0.5					
200.8	0.20	0.5					
1631	0.0002	0.005					
200.8	0.20	na					
200.8	0.20	0.5					
200.8	1.0	5					
200.8	0.20	0.5					
200.8	0.20	0.5					
200.8	10.0	20					
4500-CN f	10	10					
420.1	5	5					
DOL's bas	ad an affluan	t commilee					

PQL's based on effluent samples which are usually diluted 2X prior to analysis; PQL's for Influent are higher because the samples are usually diluted 5x.

Samples are collected considering flow detention time through the plant. Analytical MQLs are used. MAHL and WQL calculated during development of 2004 TBLL and are based on State Water Quality Standards and implementation procedures. The flow readings (MGD) are reported as average daily flow for the date of the analysis and not the average daily flow for the month. CN and Phenol sampled as grabs, 4 grabs over 24 hours combined to be analyzed as one sample. All other pollutants collected as 24 hr composite samples including Hg. Loadings limits for MAHL and WQL calculated using the average yearly sum of L001&L002 flows = 8.134 MGD.

II. C. RPCF 2013 Priority Pollutant Scan - 40 CFR 122 Appendix D Table II

				Influent	Effluent	
Name	CAS No.	Molecular Formula	Type	mg/L	mg/L	Req MQL

BNA all not detected VOC and Pest/PCB all not detected Influent Grab Samples for VOC, BNA and Pest/PCB collected 03/05/13 Effluent Grab Samples for VOC, BNA and Pest/PCB collected 03/06/13

Based on the information available to the Control Authority, there was no reason to suspect the presence of any toxic or hazardous pollutants listed in Table V, or any other pollutants known or suspected to adversely affect treatment plant operations, receiving water quality, or solids disposal procedures. For this reason no analysis was conducted.

III. Attachment A 2013 UPDATED SIGNIFICANT INDUSTRIAL USERS LIST

			CON	TROL DOC				COMPLIANCE STATUS REPORTS				
INDUSTRIAL USER	SIC CODE	CATEGORICAL DETERMINATION	Y/N	LAST ACTION	NEW USER	TIMES INSPECTED	TIMES SAMPLED	BMR	90- DAY COMPLIANCE	SEMI ANNUAL	SELF MONITORING	PERMIT EFFLUENT
Bekaert Steel	2296	Metal Finishing 433.17 & Iron and Steel 420.96	Y	01/01/13	N	1	13	N/A	N/A	С	С	С
Glad Manufacturing	2673	Non-categorical	Y	01/01/13	N	1	13	N/A	N/A	С	С	С
Kennametal	3545	Non-Ferrous Metals 471.54	Y	01/01/14	N	1	13	N/A	N/A	С	С	С
MAFCO	3443	Metal Finishing 433.17	Y	01/01/13	N	1	03	N/A	N/A	С	С	С
Model Laundry	7211	Non-categorical	Y	01/01/13	N	1	03	N/A	N/A	С	NC	С
Ozark Mt. Poultry	2015	Non-cat Meat&Poultry 432.126*	Y	01/01/13	N	1	25	N/A	N/A	С	С	С
Pel-Freez Arkansas	2015	Non-cat Meat&Poultry 432.54*	Y	01/01/13	N	1	05	N/A	N/A	С	С	С
Preformed Line	3644	Aluminum Forming 467.55	Y	05/01/13	N	1	18	N/A	N/A	С	С	NC
Southeast Poultry	2015	Non-cat Meat&Poultry 432.126*	Y	01/01/13	N	1	31	N/A	N/A	С	NC	NC
Superior Ind.	3363	Metal Finishing 433.17	Y	01/01/13	N	1	28	N/A	N/A	С	С	NC
Tyson C-N-Q	2015	Non-cat Meat&Poultry 432.124*	Y	01/01/13	N	1	59	N/A	N/A	С	С	С
Tyson of Rogers	2015	Non-cat Meat&Poultry 432.124*	Y	01/01/13	N	1	57	N/A	N/A	С	С	С

^{*}Non-point, only required to comply with 40 CFR 403

IV. Attachment B 2013 SIGNIFICANT VIOLATIONS - ENFORCEMENT ACTIONS

NATURE OF		NUMBER OF ACTIONS TAKEN					COMPLIANCE SCHEDULE				
VIOL	ATION						PENALTIES	DATE	DATE	CURRENT	
RPTS	LIMITS	N.O.V.	A.O.	CIVIL	CRIMINAL	OTHER	COLLECTED	ISSUED	DUE	STATUS	COMMENTS
1		1								С	Feb(k);
	3	4									May- O/G(d&f); NovO/G(d); Dec O/G(d);
	3	5									Jun(p); Jul CBOD(d) & TSS(d); Aug CBOD(d) & (l);
	5	5								С	JulP(c&g); OctpH (i)&P(c); NovP(c);
	VIOLA RPTS	VIOLATION RPTS LIMITS 1 3 3	VIOLATIONRPTSLIMITSN.O.V.113435	VIOLATION N.O.V. A.O. 1 1 1 3 4 4 3 5 5	VIOLATION RPTS LIMITS N.O.V. A.O. CIVIL 1 1 1 3 4 3 5	VIOLATION RPTS LIMITS N.O.V. A.O. CIVIL CRIMINAL 1 1 3 4 3 5	VIOLATION RPTS LIMITS N.O.V. A.O. CIVIL CRIMINAL OTHER 1 1 -	VIOLATION RPTS LIMITS N.O.V. A.O. CIVIL CRIMINAL OTHER COLLECTED 1 1 1 4 <	VIOLATION RPTS LIMITS N.O.V. A.O. CIVIL CRIMINAL OTHER COLLECTED ISSUED 1 1 1 -	VIOLATION RPTS LIMITS N.O.V. A.O. CIVIL CRIMINAL OTHER COLLECTED ISSUED DATE 1	VIOLTION RPTS LIMITS N.O.V. A.O. CIVIL CRIMINAL OTHER COLLECTED ISSUED DATE DATE DATE DATE STATUS 1 1 1 1 C 3 4 ISSUED N 3 5 ISSUED C C C C C C C C C C C C C C C

Note: O/G = Oil/Grease, P = Total Phosphorus

a. Daily Maximum Concentration	e. TRC Daily Maximum Concentration	i. Low pH	m. Failure to monitor 1 or more permit parameters
b. Daily Maximum Loading	f. TRC Daily Maximum Loading	j. High pH	n. Discharge of sewage or polluted waters into natural outlets
c. Monthly Average Concentration	g. TRC Monthly Average Concentration	k. Late Reports	o. Failure to notify of an operational upset(s) within 24 hours
d. Monthly Average Loading	h. TRC Monthly Average Loading	l. Monitoring Frequency	p. Failure to properly maintain and operate pretreatment

Comments: Model Laundry went out of business as a Laundry and Drycleaner and their Permit was terminated August 1st, 2013.

V. Attachment C 2013 PRETREATMENT PERFORMANCE SUMMARY (PPS)

NOTE: ALL QUESTIONS REFER TO THE INDUSTRIAL PRETREATMENT PROGRAM <u>AS APPROVED</u> BY THE EPA. THE PERMITTEE SHOULD NOT ANSWER THE QUESTIONS BASED ON CHANGES MADE TO THE APPROVED PROGRAM WITHOUT DEPARTMENT AUTHORIZATION.

A.	General Information								
Со	ntrol Authority Name	City of Rogers							
Ad	dress	4300 Rainbow Road							
Cit	у	Rogers	_ State / Zip	Arkansas 72758-1440					
Со	ntact Person	Paul N. Burns, Pretreat	tment Coordinator	_					
Со	ntact Telephone	(479) 273-7378 x306							
NP	DES Permit No.	AR0043397							
Re	porting Period	January 1, 2013 throu	gh December 31, 201	13					
То	tal Number of Categorical I	Us	5						
То	tal Number of Significant N	on-categorical IUs	7						
B. 1)	Significant Industrial Use No. of SIUs Submitting BM No. Required	•	Significant <u>Categorical</u> 0 / 0	Industrial Users Non-Categorical N / A					
21	No. of SIUs Submitting 90-	Day Compliance		<u> </u>					
۷)	Reports/No. Required	-Day Comphance	_ 0 / 0	0 / 0					
3)	No. of SIUs Submitting Ser Total No. Required	niannual Reports/							
4)	No. of SIUs Meeting Comp Total No. Required to Mee	•	_ 0 / 0	0/0					
5)	No. of SIUs in Significant M Total No. of SIUs	Voncompliance/	0/5	0/7					
6)	Rate of Significant Noncor SIUs (Categorical and Non	•		0 / 12					

C. Compliance Monitoring Program

	Significant Industrial Users		
	Categorical	Non-Categorical	
1) No. of Control Documents Issued/ Total No. Required	5/5	7/7	
2) No. of Non-sampling Inspections Conducted	5	7	
3) No. of Sampling Visits Conducted	7	11	
4) No. of Facilities Inspected (non-sampling)	5	7	
5) No. of Facilities Sampled	5	7	

D. Enforcement Actions

	Significant I	ndustrial Users
	Categorical	Non-Categorical
 No. of Compliance Schedules Issued/No. of Schedules Required 	0/0	N / A
2) No. of Notices of Violation Issued to SIUs	9	6
3) No. of Administrative Orders Issued to SIUs	0	0
4) No. of Civil Suits Filed	0	0
5) No. of Criminal Suits Filed	0	0
6) No. of Significant Violators (attach newspaper publication)7) Amount of Penalties Collected (total	0	0
dollars/IUs assessed)	0/0	0/0
8) Other Actions (sewer bans, etc.)	0	0

The following certification must be signed in order for this form to be considered complete:

I certify that the information contained herein is complete and accurate to the best of my knowledge.

Authorized Representative

Date

VI. Significant Violator Newspaper Publication

There were no Industrial Users listed in the newspaper as significantly noncompliant of permit requirements for the 2013 reporting period.

VII. Pretreatment Program Overview

A. Industrial User List

The Control Authority for the City of Rogers identified and properly characterized five Categorical Significant Industrial Users (SIUs), seven Non-categorical SIUs and two Non-Significant Industrial Users. A list of Industrial Users follows.

Significant Categorical

			Avg Monitored Process Flow ¹	% of Total IU	
Name	NAIC Code	40 CFR Category	(gpd)	Process Flow	Permit ID
Bekaert Steel	314992	433.17 & 420.96	18,593	2.23%	13-BSC
Kennametal	333515	471.54	13,333	1.60%	14-KMT
MAFCO	332919	433.17	1,650 ²	0.20%	13-MFC
Preformed Line Products	335932	467.55	6,700 ³	0.37%	13-PLP
Superior Industries	331521	433.17	135,826	16.26%	13-SII

¹ Average Flow on normal production day

Significant Non-categorical

			Monitored Process Flow ¹	% of Total IU	
<u>Name</u>	NAIC Code	40 CFR Category	(gpd)	Process Flow	Permit ID
Glad Manufacturing	326111		29,204	3.50%	13-GMC
Model Laundry	812320			N/A	13-MLD
Ozark Mountain Poultry	311615	432.126 ²	49,058	5.87%	13-OMP
Pel-Freez Arkansas	311615	432.54 ²	34,635	4.15%	13-PFM
Southeast Poultry	311615	432.126 ²	28,345	3.39%	13-SEP
Tyson Chick 'N Quick	311615	432.124 ²	392,224	46.94%	13-TCQ
Tyson of Rogers	311615	432.124 ²	123,139	14.74%	13-TOR

 $^{^{\}rm 1}\,\mbox{Average}$ Flow on normal production day

Non-Significant

	NAIC		Process Flow	% of Total IU	
Name	Code	40 CFR Category	(gpd)	Process Flow	Permit ID
Cryovac	326111		3,400	0.41%	CSA MOA-11
Harris Baking			3,000	0.36%	N/A

The sum of all the above listed IU's flow is 0.836 million gallons per day (gpd) – based on flow data from submitted DMRs. This is a decrease from last year's sum of 1.089 million gpd. Updating Industrial User and non-domestic user information is an ongoing process, conducted at a frequency that adequately ensures that all Industrial Users are properly characterized at all times. The information received from

² Batch discharge 1/week

³ Batch discharge 1/month

² Only required to comply with 40 CFR 403

surveying our industrial and commercial customers in 2013 did not result in any new industries being permitted or monitored by the Pretreatment Program. Significant Non-categorical industries are assigned 40 CFR category numbers, but since they discharge to a POTW they are only required to comply with 40 CFR 403 – General Pretreatment Regulations for Existing and New Sources of Pollution.

B. Industrial Control Documents

The Control Authority issues permits to each Significant Industrial User to control the contribution to the POTW and to ensure compliance with applicable Pretreatment Standards and Requirements. All SIUs, except Kennametal and Preformed Line Products, were issued new permits as of January 1st, 2013. Preformed Line Products was issued a new permit effective May 1st, 2013. Model Laundry has shifted is business to selling dishwashers and cleaning chemicals and detergents to foodservices establishments. The company receives dry cleaning but the actual dry cleaning is contracted to a company outside of Rogers. Their Permit was terminated August 1st, 2013. Kennametal was issued a new permit effective January 1st, 2014.

C. Industrial Monitoring and Inspection Activities

Each SIU was Control Monitored at least once during the past pretreatment year by the Control Authority. Industries required to monitor for cyanide are only Control Monitored 1/year for that parameter. Sampling is usually initiated unannounced unless the industry is a batch discharger. Industrial Users' sampling techniques, auto-sampler programming, and flow meter settings and calibration are evaluated during these activities. Collecting representative samples, using clean sampling techniques, proper pour up and preservation techniques, and following chain of custody guidelines is emphasized to the IU representative. All Industrial Users carry out self-monitoring on a monthly basis or frequency dictated by their permit. Industries increase the frequency of sampling when temporary upsets occur in order to avoid NOV's or higher surcharge fees. The Control Authority inspected all permitted Industrial Users at least once during 2013.

D. Industrial Compliance Status

The Control Authority enforces and obtains remedies for Industrial User noncompliance through the use of applicable pretreatment standards and requirements.

<u>Compliant (C)</u>: The following eight Industrial Users were compliant with permit and reporting requirements: Bekaert Steel, Glad Manufacturing, Kennametal, MAFCO, Ozark Mountain Poultry, Pel-Freez Arkansas, Tyson Chick-N-Quick, and Tyson of Rogers.

<u>Noncompliant (NC)</u>: The following four Industrial Users were noncompliant with permit requirements: Model Laundry, Preformed Line Products, Southeast Poultry, and Superior.

- 1) Model Laundry (MLD): had a violation in February for failing to self-monitor. Model laundry responded that due to less production, layoffs and equipment issues, monitoring was first delayed and then not carried out for the month of February. Model also indicated that the laundry and dry cleaning operation was going to be phased out by July 2013.
- 2) Preformed Line Products (PLP): had a violation in May for oil/grease monthly average loading the monthly average loading was also 40% higher than the limit, triggering a technical review criteria (TRC) violation as well. PLP is sampling for oil/grease in place of sampling for Total Toxic Organics (TTO). PLP collected TTO samples January and February and the TTO levels were only a fraction of the categorical limit despite having issues with high levels of oil/grease. PLP had violations in November and December for oil/grease monthly average loading but TRC was not triggered.
- 3) Southeast Poultry (SEP): had a violation in June for extremely poor housekeeping and failure to properly operate and maintain treatment operations. SEP had a violation in July for CBOD monthly average loading. SEP had violations in August for CBOD monthly average loading and for failing to sample during the first week of the month as the Permit requires.

4) Superior Industries (SII): had a violation in July for Phosphorus monthly average concentration which was also more than 20% higher than the limit, triggering a technical review criteria (TRC) violation as well. Superior had just installed a new paint room multi-stage washer and it took several days to optimize the overflow rates from the detergent stages. SII had violations in October for low pH and for Phosphorus monthly average concentration. A continuous pH meter recorded a minimum of 1.54 on October 9th. A new detergent was put in use that had a higher phosphorus concentration. SII had a violation in November for Phosphorus monthly average concentration. SII stopped using the phosphorus detergent in a secondary washer and then made improvements to the paint room multi-stage washer. SII returned to compliance during the December monitoring period.

<u>Significant Noncompliant (SNC)</u>: There were no Industrial Users in significant noncompliance of permit requirements for the 2013 reporting period.

E. General Pretreatment Regulation Requirements

Based on the information available to the Control Authority, there was no interference, pass through, upset, or POTW permit violation that was known or suspected to be caused by industrial contributors. There were no known new pollutants introduced into the treatment works from an indirect discharger. There was a substantial decrease in volume from Tyson of Rogers during 2013 due to converting from cooking whole chickens and producing chopped meat, broth, and fat to a smaller raw debone operation with some marinade. CBOD loading to the WWTP has slightly decreased but this is partially offset by production increases at the other poultry further processing plants. Superior's issues with phosphorus detergent have had a minor impact on phosphorus loadings to the WWTP. The marinade that Tyson of Rogers started using in 2013 also is a source of phosphorus. Overall daily volumes to the POTW have increased due to an increase in rainfall. No other substantial changes in the volume or character of pollutants being introduced into the treatment works by an existing collection system source have occurred.

F. POTW Analytical Results Discussion

<u>Flows</u>: The POTW's annual average daily flow rates in MGD are included in the following table. These flow rates are influenced by population growth, stormwater infiltration, and economic trends. The table below shows total effluent flow, flow to Osage Creek at location 001, and flow to the golf course at location 002. Less than half of the flow to the golf course flows back to Osage Creek upstream of location 001.

RPCF Effluent Flows in MGD - Average Daily Flow

Year	Eff Total	Eff 001	Eff 002
2004	6.840	6.454	0.386
2005	6.340	5.835	0.505
2006	6.315	5.695	0.621
2007	7.082	6.600	0.482
2008	9.169	9.016	0.153
2009	7.752	7.058	0.694
2010	7.152	6.198	0.954
2011	7.667	6.772	0.895
2012	6.585	5.292	1.293
2013	8.133	7.070	1.063

<u>Metals</u>: Metals monitoring includes all pollutants listed in 40 CFR 122 Appendix D, Table III. All Table III pollutants were monitored for on four occasions during 2013, including phenols and cyanide. Refer to section II. A. for the tabulated results. During the third quarter, grab samples were collected from Osage Creek, RPCF's receiving stream, and analyzed for Table III pollutants expected to be present. The table

below shows the results. The grab samples were collected the same day the effluent composite was being collected and the creek was at base flow for about two weeks.

		Time														
WWTP Composites	Date On	On	Sb	As	Cd	Cr	Cu	Pb	Hg	Mo	Ni	Se	Ag	Zn	Αl	Fe
RPCF Influent	9/3/2013	0836	<1.0	<1.0	<0.20	1.6	25.8	0.60	0.220	0.95	3.0	<2.5	< 0.50	124	510	902
RPCF Effluent	9/4/2013	0830	<0.40	0.44	<0.20	0.28	1.5	<0.20	0.0103	0.58	1.3	<1.0	<0.20	43.9	32	58.0
Osage Creek Grabs																
OCRR	9/4/2013	1040	<0.40	<0.40	<0.20	0.5	0.40	<0.20	0.0026	<0.20	<0.20	<1.0	<0.20	8.1	28	25
OCAPGT	9/4/2013	1105	< 0.40	0.42	<0.20	0.5	0.40	<0.20	0.0025	<0.20	<0.20	<1.0	<0.20	8.8	28	24
OCROF	9/4/2013	1150	< 0.40	0.52	< 0.20	0.3	1.1	<0.20	0.0016	0.50	1.3	<1.0	< 0.20	41.6	33	54
OC112	9/4/2013	1350	<0.40	<0.40	<0.20	0.4	0.72	<0.20	0.0017	<0.20	0.42	<1.0	<0.20	14.7	41	33
RPCF Flow 6.80	3 MG or 10).5 cfs	C	sage C	reek Flo	w above	e RPCF	22.5	cfs	C	sage Cr	eek Flo	w below	RPFC	33 (cfs
			Note:	All roci	ilte ara	ac micr	oarama	nor lite	ar Inarte r	or hilli	on)					

Note: All results are as micrograms per liter (parts per billion)

Grab samples were collected from two locations above RPCF's L001 and L002 discharges: Osage Creek at the Rainbow Road Bridge (OCRR) and Osage Creek above the Pinnacle Golf Tributary (OCAPGT). A grab sample was collected directly from RPCF's outfall (OCROF) and a sample was collected at the USGS station at the HW112 bridge north of Cave Springs (OC112). Beryllium, Thallium, Phenol, and CN were not analyzed since they are almost always less than in the effluent composite samples. Copper and Nickel are slightly higher than Osage Creek background levels. Zinc is the only Table III pollutant that is significantly higher than the receiving stream levels. Zinc is the least toxic of all the Table III metals though. The effluent composite Mercury result was about 3x higher than normal and the grab sample results suggest that this was due to sampling equipment contamination. The mercury and chromium levels below RPCF's outfall are lower than above it. Aluminum and Iron were also tested for. RPCF adds some iron to Osage Creek but iron levels remain well below chronic toxicity levels.

<u>Priority Pollutants:</u> Annual influent and effluent priority pollutant scans were conducted in March. The priority pollutant scan includes all parameters listed in 40 CFR 122 Appendix D, Table II. No priority pollutants were reported above detection limits for the influent or effluent. Refer to section II. B. for the tabulated results.

Biosolids: were monitored for total metals, cyanide, phenolics, pH, %TS&%VS, vector attraction, fecal coliform, and nutrients as required by permit during 2013. The sludge was dewatered with a centrifuge with limited use of a dryer system during the first half of the year. The use of the dryer system was scaled to 100% by August. The biosolids continue to be hauled off site to a land application site in Kansas. On average, the sludge is now dewatered to 90% Total Solids. The total amount of sludge hauled off for 2013 was 3209 tons (down from 7368 tons in 2012). The decrease in tons is due to the use of the sludge dryer. The dry tons weight is closer to 1500.

CBOD, TSS, nutrients (NH_3 -N, NO_3 -N, TN-N, TP-P, and PO_4 -P), and O/G analyses were performed on POTW influent and effluent, and IU samples. Fecal coliform is performed on POTW effluent. All results are entered into the POTW's database. The data is reviewed and trended throughout the year. Influent monitoring is occasionally influenced by return flows from various treatment plant processes including: centrate from the centrifugation of biosolids, sand filter backwash, and occasional RAS.

<u>Total Phosphorus (TP)</u>: is a major pollutant of concern due to its impact on receiving stream quality and the fact that RPCF has an effluent TP limit of 1.0 mg/L. Also it is most likely that the TP limit will be significantly reduced by 2015. The mean removal efficiency (MRE) from October 2011 to September 2012 was 96.9%. The MRE from November 2012 to October 2013 decreased to 96.4%. All SIUs must monitor for TP and eight of them have a TP monthly average Permit limit. A Maximum Allowable Industrial Load of 109 lbs/day was calculated in November 2012 and is allocated to the SIUs through individual permits.

The following table compares TP loading from SIUs with RPCF influent and effluent loading for the years 2008 to 2013. Only the top five TP contributors are listed individually. Influent TP loading has decreased since 2008. At the end of 2013, TP loading has leveled off at about 340 lbs/day.

Average Annual Total Phosphorus Loading in lbs/day for RPCF Influent, Effluent & Top SIU Contributors

_	Year	OMP	SEP	SII	TCQ	TOR	All SIUs	Influent	Effluent
_	2008	5.1	N/A	5.4	15.8	55.1	86.0	467	58.8
	2009	6.2	N/A	9.4	10.9	44.8	70.5	450	16.5
	2010	5.8	2.7	6.5	15.2	35.9	68.7	437	18.7
_	2011	10.59	2.97	7.93	9.73	26.91	61.64	388.8	13.7
_	2012	8.03	3.52	5.15	9.89	4.68	33.27	339.5	11.2
_	2013	0.98	4.41	11.68	4.35	10.16	33.69	339.9	16.0

As mentioned last year, RPCF influent monthly average TP load for 2012 and 2013 has not been this low since 1995. Ozark Mountain (OMP) has significantly decreased phosphorus loading through the use of pollution prevention measures and switching to DAF chemicals that aid in phosphorus removal. Superior (SII), as mentioned in the NOV section, has increased phosphorus loading due to detergent modifications. SII's average TP loading during the last six months of 2013 was 19.0 lbs/day – much high than the annual average. Tyson of Rogers (TOR) has changed its processes and discharges less effluent, but the new marinade line uses phosphorus based ingredients. Tyson Chick-N-Quick has cut TP loading in half using measures similar to OMP. RPCF Effluent TP loading increased for 2013 due to higher flows, minimizing the use of alum, and less influent CBOD to "encourage" the luxury uptake of phosphorus in the aeration basins.

<u>CBOD</u>: is another major conventional pollutant. At the end of 2012 the MRE was calculated to be 99.5% using data from September 2011 to August 2012. Six SIUs must monitor for CBOD and have a CBOD monthly average Permit limit. A Maximum Allowable Industrial Load (MAIL) of 4140 lbs/day was calculated in November 2012 and was allocated to the SIUs through individual permits. The following table compares CBOD concentrations and loading from SIUs with that of RPCF influent and effluent for the years 2011 to 2013. Model Laundry's data is not included since they changed business practices and had their permit terminated. Model's loading only averaged 17 lbs/day during 2012.

Average Annual CBOD Concentrations and Loading for RPCF Influent, Effluent & Top SIU Contributors

Concentrations in mg/L

				GU	iiceiiti atio	ns m mg/ L				
	Year	GMC	PFM	OMP	SEP	TCQ	TOR	SIU Sum	Influent	Effluent
	2011	41.1	53.5	70.8	268.2	225.1	179.7	N/A	241.8	1.2
	2012	56.8	113.7	187.4	224.1	195.9	224.5	N/A	232.9	1.1
	2013	85.6	92.0	133.5	338.7	172.6	114.7	N/A	165.3	1.2
					Loading in	lbs/day				
_	Year	GMC	PFM	OMP	SEP	TCQ	TOR	SIU Sum	Influent	Effluent
	2011	10.6	12.5	47.3	83.7	790.3	496.5	1440.9	14465	79.4
	2012	14.1	36.5	122.1	63.0	681.3	483.5	1400.4	12541	60.4
	2013	23.7	27.0	67.7	92.4	595.6	169.2	975.6	10716	82.5
	2013	23.7	47.0	07.7	72.4	393.0	107.2	973.0	10/10	02.5

RPCF influent concentrations and loadings have decreased over the last three years. The SIU loading has decreased mainly due to process changes at Tyson of Rogers (TOR). The day to day loading from industries

varies greatly. For example, the standard deviation for the 2013 Tyson Chick-N-Quick loading is 340 lbs. Variation in CBOD loading may impact biological phosphorus removal. The industries with CBOD loading limits are only using about 24% of the MAIL.

G. City Water Usage Trends

The following table displays water usage trends from 1996 to 2013. Water usage has steadily increased with population growth. The City's population has increased from 35,000 in 1995 to 58,000 in 2011. Increased irrigation in dry years and less irrigation in wet years influences water usage. Industrial water usage peaked in 1997 at 695.6 MG/year and has decreased each following year. The economic recession of 2008 and 2009 influenced the decrease in water usage for all categories. 2012 was an extremely dry year with respect to rainfall. The drop in water usage in 2013 is due to much less irrigation. Also Tyson of Rogers is using much less water than they did in 2012.

City of Rogers - Water Usage Trends with Annual Totals in Millions of Gallons

Year	Residential	Commercial	Industrial	Misc	Total	% Industrial
1996	1033.147	378.946	646.243	40.833	2099.171	30.79
1998	1177.425	346.184	694.664	68.431	2286.704	30.38
2000	1194.970	390.912	574.602	58.712	2219.196	25.89
2002	1233.192	441.954	613.014	80.165	2368.325	25.88
2004	1274.534	499.435	608.668	93.809	2476.446	24.58
2006	1499.065	617.313	596.850	144.167	2857.395	20.89
2008	1273.620	594.753	603.792	152.923	2625.088	23.00
2010	1443.800	638.200	516.594	96.578	2694.771	19.16
2011	1517.844	663.668	530.470	78.273	2790.256	19.01
2012	1688.130	760.645	491.108	99.330	3039.214	16.16
2013	1494.327	702.752	431.137	94.617	2722.834	15.83

H. F.O.G. Abatement

The City of Rogers is committed to protecting the collection system from excess fats, oils, and greases (F.O.G.) in order to prevent blockages and overflows. The F.O.G. Abatement Program aims to evaluate all food service establishments (FSEs) to determine grease interceptor (GI) sizing. GIs are sized according to the food served, number of patrons, hours of operation and number of grease-generating appliances. Onsite inspections at existing food service establishments are performed to ensure compliance with grease abatement regulations and to address problem areas. Other businesses that contribute oils and greases into the sanitary sewer system, such as car washes and auto maintenance shops, are also of concern. These businesses are evaluated to determine if oil/water interceptors are required.

At the beginning of each inspection, information is obtained from the managers of the food service establishment: the name of the grease interceptor pumper company, the date of the last pump, and the frequency of pumps throughout the year. Informational handouts, F.O.G. posters, and cleaning logs are then handed out if the FSE has never received them before. The GI lid(s) is examined to make sure it is secure and sealed. Once the interceptor is opened, the walls and inlet/outlet tees are examined for damage. If the grease appears very thick, a sludge judge is used to check the percentage of grease saturation of the water inside. These numbers are recorded for our records. The used cooking oil receptacles are also checked if the establishment has one. An inspection notice is filled out and given to the manager if there are any problems. Problems may include: grease oversaturation, broken outlet tee, unsecure lid(s), broken

lid handles, interceptor overflow, and/or poor used cooking oil receptacle housekeeping. For these cases, follow-up inspections are scheduled and further findings are added to the inspection notice. A total of 129 food service establishments were inspected in 2013, which includes both new and follow-up inspections.

The F.O.G. program has also had much success in its outreach activity during 2013. Bill inserts with information about how to deal with F.O.G. at home were created and sent out to the residential community of Rogers. Clean Kitchen Practices handouts in both English and Spanish were revised and given to all food service establishments upon inspection. Detailed laminated posters with pictures of Clean Kitchen Practices were produced and given out as well. In the fall of 2013, the F.O.G. program visited the Benton County Solid Waste District and the Rogers Recycling Center in order to become more informed on their used cooking oil recycling programs. Handouts that advertised these programs were made and handed out at the semi-annual Benton County Clean-up in October to 1300 people.

Also in 2013, the F.O.G. program was able to begin working together with the City of Rogers to resolve storm water issues. The F.O.G. team has begun to report any GI overflows that may have drained into a storm drain with the creation of the Illicit Discharge Report form. This form is filled out and sent to the appropriate personnel when an overflow event occurs.

I. Surcharge fees Summary

Surcharge fees are assessed for each day TSS or CBOD results are above 300 mg/L. Oil and grease results above 100 mg/L may also be surcharged. The number of days for the surcharge is determined by the total number of operational days between known concentrations below 300 mg/L. Surcharge fees are collected to cover the extra operational cost associated with higher strength waste. Surcharge fees are not considered violations.

Surcharges for 2013

		Su	rcha	rge Amou	nts	Total
Month	Industry	CBOD		TSS	Oil/Grease	rcharge
T	-				•	
Jan.	TOR	\$ 385.74	\$	91.83		\$ 477.57
Feb.	TOR	\$ 605.83				\$ 605.83
Mar.						
Apr.	TCQ	\$ 504.23				\$ 504.23
May						
I	TCQ	\$ 210.95				\$ 210.95
June	SEP	\$ 348.80	\$	271.19		\$ 619.99
Il.	OMP	\$ 175.16				\$ 210.95
July	SEP	\$ 601.97	\$	97.38		\$ 699.35
Aug.	SEP	\$ 420.61				\$ 420.61
	TOR	\$ 55.65	\$	375.28		\$ 430.93
Sept.	SEP	\$ 175.42				\$ 175.42
_	OMP	\$ 280.39				\$ 280.39
0+	TOR	\$ 61.67				\$ 61.67
Oct.	SEP					
	TOR		\$	63.52		\$ 63.52
Nov	TCQ	\$ 461.64				\$ 461.64
Nov.	GMC	\$ 93.01				\$ 93.01
	TOR	 	\$	45.78		\$ 45.78
Dec.	OMP OMP	\$ 134.32				\$ 134.32
Totals		\$ 4,515.39	\$	944.98	\$ -	\$ 5,496.16

VIII. City of Rogers Industrial Pretreatment Contacts

Company	Permit #	First Name	Last Name	Job Title	E-mail Address	Business Phone	Ext	Mobile Phone	Address	Zip
Bekaert Steel	13-BSC	Rodney	Bland	Env. Coordinator	rodney.bland@ bekaert.com	479-631-7661	529	479-619-9601	1 Bekaert Drive	72756 -1948
Glad Manufacturing	13-GMC	Mike	Watkins	Env. Coordinator	mike.watkins@ clorox.com	479-246-6331		479-366-1862	1700 N 13th St	72756 -2308
Kennametal Inc	14-KMT	Tim	Bair	EHS Manager	tim.bair@ kennametal.com	479-636-1515	4726	479-531-4611	205 N 13th St	72757 -0009
MAFCO	13-MFC	John	Wood	Manufacturing Engineer	jwood.mafco@ sbcglobal.net	479-631-0404	106		1203 N 6th St	72757 -1058
Ozark Mt. Poultry	13-OMP	Tommy	Lewis	Maintenance Manager	tlewis@ ompfoods.com	479-633-8600	4264	479-644-0003	750 West Easy St	72757
Pel-Freez Arkansas	13-PFM	Kirk	Lacewell	Logistics Supervisor	klacewell@ pel- freez.com	479-636-4361	385	479-877-0712	219 N Arkansas St	72756
Preformed Line Products	13-PLP	Steve	Renfro	Sr. Industrial Engineer	srenfro@ preformed.com	479-636-7600	309	479-387-8875	2740 S 1st St	72757 -0808
Southeast Poultry	13-SEP	Candice	Mendoza	Quality Manager	cmendoza@ southeastpoultry.com	479-636-3600		479-685-6969	2200 Town West Dr	72756
Superior Industries	13-SII	Mark	Hereford	Quality Auditor	mhereford@ supind.com	479-631-8037	418		1301 N Dixieland Rd	72756
Superior Industries	13-SII	David	Miller	Corp Env. Manager	dcmiller@ supind.com	479-443-7870	5322	918-671-6590	1301 N Dixieland Rd	72756
Tyson Chick-N- Quick	13-TCQ	Randy	Moore	Wastewater Manager	Randy.moore@ tyson.com	479-636-7251		479-878-5152	400 W Olrich St	72756
Tyson Chick-N- Quick	13-TCQ	Jay	Lor	Complex Env. Manager	jay.lor@ tyson.com	479-986-3216		479-227-0088	400 W Olrich St	72756
Tyson of Rogers	13-TOR	Wylie	Luther	Wastewater/Env. Manager	wylie.luther@ tyson.com	479-636-1620			212 E Elm St	72756
Tyson of Rogers	13-TOR	Mark	Dooly	Complex Env. Manager	mark.dooly@ tyson.com	479-290-6404		479-713-0515	212 E Elm St	72756

Updated 01/22/2014 by: Paul Burns